Pinpoint Bottlenecks, Equipment Issues, and Design Limitations through Static and Dynamic Process Modeling

- Capabilities of Static and Dynamic Process Simulations
- Case Studies

Static/Dynamic Process Simulation

Process Modeling Software

- AVEVA Proll
- Aspentech HYSYS (Most common)

Combined Use of Simulation Tools: 13,000 – 15,000 Hours Annually

- 1 hour per day per Process Engineer
- 75% of our group is skillful in process simulation/modeling

Steady State Versus Dynamic State

Steady State

- Snapshot in time to determine when a system is 'lined-out' and running in an essentially static mode.
- Used to evaluate distinct step-changes in system operation
- Advantages
 - Quick and easy
 - Uses robust equations of state
 - Reliable and reproducible

Dynamic State

- Change over time evaluation to help predict how a system will react in an upset mode or a 'test-run' mode. Think, 'Real World'
- Advantages
 - Can help determine actual overall relief loads instead of point-in-time
 - Can model real-world operations

Steady-State Simulations

- "Modifying the Basis"
- See Impact of:
 - Changing Feed Rate or Composition
 - Equipment evaluation (e.g. Heat Exchanger)
 - Detailed Heat Exchanger Modeling (EDR)
 - Hydraulic evaluation Debottlenecking/Sizing
- Example Distillation Tower Overhead

Dynamic Simulations

- "What If"
- Used to evaluate the following:
 - Peak relief loads in a system
 - Impact of a unit upset in overall operations
 - Evaluation of SIS / Process Safety Times (example later)
- Example DHDS Overfill and Settle Out

Thank You

www.anvilcorp.com